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Abstract. We discuss the ground state magnetic phase diagram of the Hubbard model off half filling within
the dynamical mean-field theory. The effective single-impurity Anderson model is solved by Wilson’s numer-
ical renormalization group calculations, adapted to symmetry broken phases. We find a phase separated,
antiferromagnetic state up to a critical doping for small and intermediate values of U , but could not stabi-
lize a Néel state for large U and finite doping. At very large U , the phase diagram exhibits an island with
a ferromagnetic ground state. Spectral properties in the ordered phases are discussed.

PACS. 71.27.+a Strongly correlated electron systems – 71.30.+h Metal-insulator transitions and other
electronic transitions – 74.25.Jb Electronic structure

1 Introduction

Originally proposed for the description of ferromagnetism
in transition metals, the Hubbard model [1]

H =
∑
i,j

∑
σ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ (1)

is the simplest model to describe the interplay between
delocalization or band formation in solids and the local
Coulomb correlations. Despite its simplicity, the phase di-
agram of the Hubbard model (1) reveals a surprising rich-
ness. One finds Mott-Hubbard type metal-insulator tran-
sitions [2], antiferromagnetism [3], ferromagnetism [4] and
incommensurate magnetic phases [5]. More recently, the
Hubbard model has also become one of the most promis-
ing candidates to describe the low-energy properties and
possibly the superconductivity in the high-Tc cuprates [6].

The Hubbard model at half filling 〈n〉 = 1 has been in-
vestigated thoroughly using various approximate and ex-
act techniques [7,8] and its properties are understood to a
large extent. Off half filling, the model is well understood
for d = 1 but the situation is less clear in dimensions d > 1.
Basically the only rigorous result is due to Nagaoka [9],
who proved that a ferromagnetic ground state is possible
under certain conditions.

The introduction of the limitD→∞ [10–12] in princi-
ple allows to solve models like the Hubbard model exactly
without loosing the competition between kinetic energy
and local Coulomb repulsion [13]. This surprising insight
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has subsequently triggered a large amount of investiga-
tions of the infinite dimensional Hubbard model [13]. In
addition, D → ∞ turned out to be a reasonable start-
ing point for weak-coupling expansions [14,15]. Within
this approach, in addition to the expected magnetic or-
der for a bipartite lattice, phase separation was found for
the whole region of the magnetically ordered phase [15].
Since this result is based on a weak-coupling expansion,
it is far from clear whether it holds for finite values of
the interaction U as well. Results from a numerically ex-
act solution of the Hubbard model in D = ∞ based on
Quantum Monte-Carlo simulations for example showed no
evidence for phase separation [16], but these calculations
were done in the paramagnetic phase and at finite, com-
paratively high temperatures.

The question whether phase separation in the Hubbard
model occurs in a certain parameter regime is of some im-
portance for two reasons. First, from a model theoretical
point of view, it is of course interesting to explore the sta-
bility of the different possible ordered phases which might
be unstable with respect to phase separation. Second, a
vicinity to phase separation has been discussed as one of
the possible ingredients to the superconductivity in the
high-Tc cuprates [17,18]. Moreover, a tendency towards
phase separation together with the long-range part of the
Coulomb interaction may in principle lead to charge or-
dered states such as stripe-phases.

Phase separation has long been predicted [17,19] and
indeed been observed for the t-J model in D = 1, 2
(for a review see e.g. [20]). Since the t-J model for
vanishing J is connected to the Hubbard model in the
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limit U/t → ∞ [21], additional information about phase
separation in the strong coupling limit could thus be ob-
tained. However, the early work on phase separation in the
t-J model established phase separation only for J ∼ t [20].
Despite ongoing efforts [22] the situation in the limit
J → 0 is far from clear and more detailed studies are
necessary. It thus appears that the question about phase
separation in the Hubbard model even for U/t → ∞ in
D = 2 has not been clarified yet, since also direct inspec-
tion of the Hubbard model in the limit U/t→∞ leads to
contradictory results [23,24].

The results for the 2D Hubbard model for finite U
available so far have not revealed signs for phase separa-
tion [20,25]. However, these results are typically based on
Quantum Monte-Carlo or related techniques, which have
severe problems in the interesting parameter regime close
to half filling and at very low temperatures. Consequently,
one either has to restrict oneself to rather small system
sizes [20] or use further approximations [25]. Thus, to our
present knowledge a detailed study of the ground state
phase diagram of the Hubbard model in the thermody-
namic limit and in the vicinity of half filling, compris-
ing weak, intermediate and strong coupling within a non-
perturbative approach is not available.

Such an approach is provided by the limit D → ∞,
which allows for in principle exact calculations in the ther-
modynamic limit for all model parameters, even at T = 0.
The price one pays is the neglect of non-local dynamics,
which of course is most severe for D ≤ 2. Nevertheless,
the theory can give valuable information about whether
phase separation is possible at all.

The paper is organized as follows. In Section 2, we
give a brief description of the solution of the Hubbard
model in the limit D→∞. Results for the phase diagram
and the dynamics in the different phases are presented in
Section 3. The main conclusions of the paper are summa-
rized in Section 4.

2 Theoretical background

2.1 General remarks

The dynamical mean-field theory (DMFT) to exactly solve
the Hubbard model in the limit D → ∞ is based on the
work by Metzner and Vollhardt [10] and is by now well-
established [13]. The basic ingredient is that for D → ∞
the proper single-particle self energy Σ(k, z) becomes
purely local or momentum independent, i.e. Σ(k, z) D→∞−→
Σ(z) [10,12]. This can be used to map the Hubbard
model (1) onto an equivalent quantum impurity prob-
lem supplemented by a self-consistency condition [13].
The remaining problem (the solution of a quantum im-
purity model) is, however, highly nontrivial. Several ap-
proximate and numerically exact techniques are currently
available [13,26].

Most of these methods cannot access T → 0 or are
restricted to the weak-coupling regime of the Hubbard
model. The most reliable technique to solve the quantum

impurity problem for all interaction strenghts U and fill-
ings n at T = 0 and low T is the numerical renormalization
group (NRG) [26,27]. Originally, this method was set up
to treat the paramagnetic problem only [27], but recent
extensions have shown that calculations with a symmetry
breaking field are possible with a similar level of accu-
racy, too [28,29]. Hence we are able to study magnetically
ordered phases directly at T = 0.

In contrast to the standard NRG, a more refined ap-
proach has to be used to calculate dynamical quanti-
ties in the presence of a magnetic field. This has first
been noted by Hofstetter, who observed discrepancies in
the magnetization calculated from the spectral functions
and the ground state occupation numbers [29]. To resolve
this problem, he proposed a modification of the standard
method [30] to calculate the spectral function. A more de-
tailed discussion of this technical point and its physical
background will be presented elsewhere.

There are in principle two ways to determine the phase
boundary between the paramagnetic and a magnetically
ordered state. First, one can calculate the susceptibility
corresponding to the anticipated order and look for a di-
vergence. Second, one can allow for a proper symmetry
breaking in the one-particle Green function and search
for the region in parameter space where a solution with
broken symmetry becomes stable. Especially for T = 0
the first method is rather cumbersome in general and, by
construction, also makes no statement about the thermo-
dynamic stability of phases beyond the critical point.

We thus use the second approach as our method of
choice. However, this prohibits the search for incommen-
surate phases, because only broken symmetries with a
commensurate wave vector can be implemented that way.
Since we are interested mainly in standard Néel type anti-
ferromagnetic order, the proper way is to introduce an AB-
lattice structure and allow for different sublattice magne-
tizations. The resulting Green function then becomes a
2 × 2 matrix, which within the DMFT and for nearest-
neighbor hopping on a simple hypercubic lattice

tij =
{
−t if i, j are nearest neighbors
0 else (2)

has the form [13]

Gkσ(z) =
(
z + µ−ΣA

σ (z) −εk
−εk z + µ−ΣB

σ (z)

)−1

, (3)

where k is a vector in the magnetic Brillouin zone (MBZ).
For the Néel state on an AB-lattice a further simplifica-
tion arises from the symmetry ΣA

σ (z) = ΣB
σ̄ (z). For the

calculation this means that we do not have to solve inde-
pendent quantum impurity models for the two sublattices,
but only one for say sublattice A.

But how to control the filling if the homogeneous so-
lution (homogeneous concerning the charge distribution)
turns out to be unstable towards phase separation? Fix-
ing the chemical potential µ is not sufficient as the system
will be driven to a filling corresponding to a stable solu-
tion, such as n = 1. To enforce a metastable state with
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Choose initial chemical potential µ and self-energy
Σ(z)

Calculate effective medium Γ (ω)

Solve effective SIAM defined by µ, U
and Γ (ω)

Determine 〈n〉SIAM from solution

Adjust µ to obtain desired 〈n〉

Iterate to self-consistency of Σ(z)

Fig. 1. Flow diagram for the DMFT self-consistency cycle with
fixed filling 〈n〉.

finite doping we adopt a procedure which has been already
used in calculations for the half-filled Hubbard model in
a homogeneous magnetic field [31]. The schematic flow
diagram of the resulting DMFT self-consistency cycle is
shown in Figure 1. Starting from a paramagnetic solu-
tion for the desired doping, a homogeneous or staggered
symmetry breaking is introduced and the corresponding
effective medium, Γσ(ω), for the DMFT cycle is deter-
mined [13]. Keeping the medium Γσ(ω) fixed, one now
varies the on-site energy of the effective SIAM until the
desired doping has been reached. This result is used to ob-
tain a new effective medium, and the procedure is repeated
until convergence is reached. It should be noted that, for a
metastable state, no true convergence can be reached for
a finite number of iterations in the sense that the solution,
when iterated further without adjusting the filling prop-
erly, will flow again into the phase separated one. Typi-
cally, for such a calculation, the on-site energy between
successive DMFT iterations shows a weakly damped os-
cillatory behavior. We thus iterate the system until the
chemical potential does not change by more than 2–3%
between two successive iterations and the physically in-
teresting quantities do not show any visible qualitative
changes. At this point, in order to minimize errors, we cal-
culate all quantities by averaging over several iterations.

To find the correct ground state, we need to calculate
the ground state energy

E

N
=

1
N
〈H〉 =

1
N
〈Ht〉+

U

N

∑
i

〈ni↑ni↓〉, (4)

where Ht is the kinetic part of the Hamiltonian (1). The
expectation value 〈ni↑ni↓〉 can be determined within the
NRG directly. The quantity 〈Ht〉, on the other hand, de-
pends on the phase we are looking at. For the para- and
ferromagnetic phases it is simply given by [13]

1
N
〈Ht〉 =

∑
σ

∞∫
−∞

dε ε ρ(0)(ε)

∞∫
−∞

dωf(ω)Aσ(ε, ω), (5)

with ρ(0)(ε) the density of states (DOS) for the non-inter-
acting system, f(ω) the Fermi function and

Aσ(ε, ω) = − 1
π
=m 1

ω + µ− ε−Σσ(ω + i0+)

the spectral function of the Hubbard model in the DMFT,
i.e. with k-independent one-particle self energy.

For an antiferromagnetic state with Néel order one has
to take into account the AB-lattice structure and the for-
mula becomes [13]

1
N
〈Ht〉 = 2

∞∫
−∞

dε ε ρ(0)(ε)

∞∫
−∞

dωf(ω)B(ε, ω) (6)

instead, with

B(ε, ω) = − 1
π
=m 1√

ζσ(ω)ζσ̄(ω)− ε

and ζσ(ω) = ω+µ−Σσ(ω+i0+). Obviously, expression (6)
reduces to (5) without magnetic order, i.e. ζσ(ω) = ζσ̄(ω).

Throughout the rest of the paper we concentrate
on results for a simple hypercubic lattice and nearest-
neighbor hopping (2). The resulting DOS ρ(0)(ε) then be-
comes [10,12]

ρ(0)(ε) =
1

t∗
√
π

e−(ε/t∗)2
. (7)

In the following we use t∗ = 2
√
D = 1 as our unit of

energy.

2.2 Weak-coupling results

Let us briefly review some weak-coupling results as these
will be frequently referred to in Section 3. Since the hy-
percubic lattice is a bipartite lattice, one obtains in low-
est order, i.e. in Hartree approximation, a transition into
a Néel state for any U > 0 at T = 0 below a critical
doping δH

c (U). For small U → 0 the magnetization m as
well as the critical doping depend non-analytically on U ,
i.e. m, δH

c ∝ exp
(
−1/(Uρ(0)(0))

)
/U independent of the

dimension.
A quantity of particular interest in the DMFT is the

single-particle Green function. The general structure of
the Green function in the Néel phase for both Hartree
theory and DMFT is given by expression (3), where in the
Hartree approximation Σσ(z) reduces to ΣH

σ (z) = Unσ̄ =
1
2U(n− σm) with n the filling and m the magnetization.
The local Green function is obtained from (3) by summing
over k ∈MBZ, which yields for example for spin up

G↑(ω) =
ζ↓(ω)√

ζ↑(ω)ζ↓(ω)
G(0)

(√
ζ↑(ω)ζ↓(ω)

)
(8)

with ζσ(ω) = ω + i0+ + µ− U
2 n+ σU2 m and

G(0)(z) =

∞∫
−∞

dε
ρ(0)(ε)
z − ε · (9)
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ω
−

ω
+ ω

0

ρ ↑
(ω

)

∼  1

√

ω − ω −

∼  √

ω − ω +

U |m|

Fig. 2. Behavior of the DOS for the majority spins on a par-
ticular sublattice in Hartree approximation close to the gap
edges.

For the further discussion let us define

ω− = U
2 n− µ−

U
2 m

ω+ = U
2 n− µ+ U

2 m.

Then, as long as ω ≤ ω− or ω ≥ ω+, the radicant in (8) is
positive and the resulting DOS can be expressed as

ρ↑(ω) =
ζ↓(ω)√

ζ↑(ω)ζ↓(ω)
ρ(0)

(√
ζ↑(ω)ζ↓(ω)

)
.

For ω− < ω < ω+, on the other hand, the radicant in (8)
is negative, i.e.

√
ζ↑(ω)ζ↓(ω) = i

√
|ζ↑(ω)ζ↓(ω)|. Since for

the particle-hole symmetric DOS (7) the Green function
G(0)(z) defined in (9) for purely imaginary arguments is
purely imaginary, too, one finds

ρ↑(ω) = 0,

i.e. the DOS has a gap between ω− and ω+. As one ap-
proaches ω− from below or ω+ from above, it is easy to
confirm that

ρ↑(ω) ≈



√
Um

|ω − ω−|
ρ(0)(0) ω ↗ ω−√

|ω − ω+|
Um

ρ(0)(0) ω ↘ ω+

. (10)

The corresponding DOS for σ =↓ has a similar behavior.
Here, however, the DOS diverges like 1/

√
|ω − ω+| at the

upper gap edge, and vanishes like
√
|ω − ω−| at the lower

one.
In order to determine the thermodynamically stable

phase one has to calculate the ground state energy as func-
tion of the doping δ = 1−n. The result up to second order
in U is [15]

E(δ) −E(0) = −U
2
δ + αHΦH(δ/δ1), (11)

0 0,5 1 1,5 2
δ/δ1

0

0,2

0,4

0,6

Φ
H

(δ
/δ

1)

Fig. 3. The function ΦH(δ/δ1) from equation (12). Note the
concave curvature between δ = 0 and δ = δ1. The dashed line
shows the actual behavior of the ground state energy following
from a Maxwell construction.

where

ΦH(x) =


1
2
x

(
1− 1

4
x

)
x < 1

1
4

(
1 +

1
2
x2

)
x > 1

(12)

and δ1 is the critical doping for antiferromagnetism in
Hartree approximation. The coefficient αH is given by
αH = 2δ2

1/ρ
(0)(0). The function ΦH(δ/δ1) appearing in ex-

pression (11) leads to the full line in Figure 3. Apparently,
this function is not convex for small δ, i.e. the resulting
phase is thermodynamically unstable towards phase sep-
aration for dopings less than δc =

√
2δ1. The resulting

ground state energy is then obtained from a Maxwell con-
struction, given by the straight dashed line in Figure 3.

3 Results

Let us start with a short overview of the behavior at
half filling, n = 1. Here, the Néel phase is energetically
stable. The variation of the DOS for increasing U from
U = 1 (full curve) to U = 6 (dashed curve) is shown in
Figure 4. As expected, the DOS for small U resembles
the form (10) predicted for weak-coupling, i.e. one sees
the remnants of the characteristic square-root divergence
in the spin up DOS at the lower gap edge and a corre-
sponding power law at the upper gap edge. These char-
acteristic features however vanish rapidly with increasing
U , and already for U = 3 the DOS mainly consists of the
Hubbard peaks at ω = +U/2 and ω = −U/2 for σ =↓
and σ =↑, respectively; reminiscent of the behavior ex-
pected for the Mott-Hubbard insulator, where only the
incoherent charge excitation peaks at high energies are
present [2,13,32,33]. Note that neither from the spectra
in Figure 4 nor from the behavior of the magnetic mo-
ment in the inset of Figure 4 one can infer that at U ≈ 4.1
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−4 −2 0 2 4
ω

0

1

ρ ↓
(ω

)

0

1

ρ ↑
(ω

)

U=1
U=2
U=3
U=6

0 2 4 6
U

0

0,5

1

n
↑−n

↓

Fig. 4. DOS for spin up and down at half filling in the antifer-
romagnetic phase as function of U . While for small values of U
the weak-coupling form (10) is approximately reproduced, the
DOS for large U is basically that of the Mott-Hubbard insula-
tor. The inset shows the magnetization as function of U .

−2 0 2 4
ω

0

0,5

ρ ↓
(ω

)

0

0,5

ρ ↑
(ω

)

δ=7%
δ=13%
δ=16%
δ=20%

Fig. 5. DOS for spin up and down for U = 3 and different
dopings δ = 7%, δ = 13%, δ = 16% and δ = 20%. The system
at δ = 20% is already in the paramagnetic phase.

the Mott-Hubbard metal-insulator transition occurs in the
paramagnetic state [32,33].

Keeping U fixed at U = 3 and increasing δ leads to the
spectra shown in Figure 5. Quite interestingly, the typical
weak-coupling characteristics reappear in the spectra for
small doping and are still recognizable for δ = 13%. Note
also that upon variation of doping and hence of the mag-
netization the spectra are not shifted in the same way as

−1/2 0 1/2

k/π

∝ U |m|

(a)

(b)

(c)

 

Fig. 6. Schematic picture of the Hartree bandstructure of the
Hubbard model in the Néel state. The arrows at the left hand
side of the figure represent the energy scales of the correspond-
ing paramagnetic Fermi liquid for half filling and weak cou-
pling (a), half filling and intermediate coupling (b) and finite
doping and intermediate coupling (c).

in Hartree theory. Instead, the dominant effect is a strong
redistribution of spectral weight from the Hubbard bands
to the Fermi level. Eventually, in the paramagnetic phase
one recovers the well-known three peak structure of the
doped Hubbard model in the DMFT [13].

The evolution of the spectra both at and off half filling
can be understood within a simple picture. In Figure 6 we
show a sketch of the Hartree bandstructure of the Hub-
bard model in the Néel state, which has two branches in
the MBZ and a gap of width ∝ U |m| between them. If,
on the other hand, we inspect the paramagnetic solution,
one for example finds at half filling and for small values
of U a Fermi liquid with quasiparticles defined on an en-
ergy scale larger than U |m|. This situation is indicated by
the arrow labeled (a) on the left side of Figure 6. Here we
expect, and indeed find for the antiferromagnetic solution
(see full curve in Fig. 4), a DOS that shows the charac-
teristic van-Hove singularities of Figure 2. Increasing U
eventually leads to a situation, where the energy scale for
the quasiparticles in the paramagnetic state is finite but
much smaller than U |m| (arrow (b) in Fig. 6). The self-
energy in the energy region of the van-Hove singularities
then has a large imaginary part and will completely smear
out the characteristic structures. Further increasing U into
the Mott-Hubbard insulator will then not change the pic-
ture qualitatively, explaining the similarity between the
curves for U = 3 < UMIT and U = 6 > UMIT in Figure 4.
With finite doping, we move the chemical potential into,
e.g., the lower band; this means that even for a relatively
small quasiparticle energy scale one again sees the van-
Hove singularities at the band edge, which results in the
well defined singularities in the spectra for small doping
in Figure 5.

From the occupation numbers nσ obtained after con-
vergence of the DMFT calculation one can calculate the
magnetization per electron, m = (n↑ − n↓)/(n↑ + n↓), as
function of the doping δ. The results for U = 1 and U = 3
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0 0,04 0,08
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0,2

0,4

0,6

0,8

1

m
=

(n
↑−

n
↓)/

(n
↑+

n
↓)

(a)

0 0,1 0,2

δ

(b)

AFM

PM

AFM

PM

Fig. 7. Doping dependence of the magnetization per electron
for U = 1 (a) and U = 3 (b). The full lines are fits with the
function (13), the resulting fit parameters are summarized in
Table 1.

are shown in Figure 7a and b together with a fit to a power
law

m(δ) = m0

∣∣∣∣1− δ

δAF
c

∣∣∣∣ν · (13)

The resulting fit parameters are summarized in Table 1.
As expected for a mean-field theory, the value for the crit-
ical exponent is ν = 1/2.

Finally, with the converged DMFT self-energy Σσ(z)
we can calculate the expectation value 〈H〉/N according
to equations (4, 5) respectively (6) for the paramagnetic
and antiferromagnetic phase. The results for the charac-
teristic function

Φ(δ) = E(δ) +
U

2
δ −Emag(0)

are summarized in Figure 8a and b. In Figure 8 the ener-
gies of the antiferromagnetic phase are represented by the
circles, those of the paramagnetic phase by squares. The
full lines interpolating the antiferromagnetic data are fits
to the function

Φ(δ) = αΦH(δ/δ1) + γ

(
δ

δ1

)3

(14)

with ΦH(x) according to (12). The fit parameters are sum-
marized in Table 1. The use of the function ΦH(x) in (14) is
motivated by the results of van Dongen [15]. The lines in-
terpolating the paramagnetic data are meant as guides to
the eye only. The dotted vertical lines denote the value δAF

c
as obtained from Figure 7.

The antiferromagnet obviously has the lower energy
as compared to the paramagnet in the region 0 ≤ δ ≤
δAF
c . However, in both cases U = 1 and U = 3 we find a

clear non-convex behavior in E(δ) in that region, i.e. the
aforementioned signature of an instability towards phase
separation. The true ground state energy as function of δ

0 0,05 0,1

δ

0

0,005

0,01

0,015

Φ
(δ

)=
E

(δ
)−

E
m

ag
(0

)+
U

δ/
2

δ
c
AF

(a)

0 0,1 0,2

δ

0

0,05

0,1

0,15

0,2

δ
c
AF

(b)

Fig. 8. Doping dependence of the energy of the paramagnetic
phase (squares) and the Néel phase (circles) for U = 1 (a) and
U = 3 (b). The full lines are fits with the function (14), the
corresponding fit parameters are summarized in Table 1. The
dashed lines are the result of a Maxwell construction for the
ground state energy.

Table 1. Results of the fits of m(δ) in Figure 7 to expres-
sion (13) and E(δ) in Figure 8 to (14).

Magnetization Energy

U m0 δAF
c ν δPS

c δ1 α/αH γ

1 0.4 0.06 0.49 0.07 0.047 0.52 0

3 0.9 0.16 0.54 0.157 0.191 0.33 0.026

is obtained again via a Maxwell construction, leading to
the dashed lines in Figure 8 and the values δPS

c given in
Table 1. Note that in both cases δAF

c ≈ δPS
c within the

accuracy of the fitting procedure.
While for U = 1 the function Φ(δ) nicely follows

the weak-coupling prediction (11) with renormalized con-
stant α one finds a sizeable contribution ∼δ3 for U = 3.
This additional term results in a much weaker non-convex
behavior of E(δ) for U = 3.

For values U > 4 we were not able to find a stable
solution with Néel order and well-defined doping δ > 0,
although for δ < δc(U) the paramagnetic phase becomes
unstable. However, the numerical calculations rather pro-
duce a cycle encompassing a range of fillings instead of one
solution with definite filling here. It might be interesting
to note that at least each of the fillings in this cycle has a
unique magnetization associated with it and that all spec-
tra in this cycle correspond to an insulator. Currently it is
neither clear what type of magnetic solution we find here,
nor whether the breakdown of the Néel solution is a true
physical effect or due to numerical problems. Since at half
filling the Néel state is present at these values of U , in-
commensurate structures or again a phase separated state
seem to be possible.

For values of U beyond Uc ≈ 25 yet another magnetic
phase appears, namely the ferromagnet. The existence of
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0 0,05 0,1 0,15 0,2

δ

0

0,2

0,4

0,6
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(δ

)

(a)

−3 −2 −1 0 1 2

ω

0

0,5

ρ ↓
(ω

)

0

0,5

ρ ↑
(ω

)

δ=12%
δ=1.7%

(b)

Fig. 9. (a) Ferromagnetic magnetization per electron as func-
tion of doping δ for U = 50. The full line is a fit to the func-
tion (15). The critical doping is δc ≈ 14.6%. Note that for
δ → 0 the results are consistent with a fully polarized ferro-
magnetic state. (b) Local density of states for U = 50 and
two characteristic dopings δ = 12% (full lines) and δ = 1.7%
(dashed lines). In contrast to the Stoner theory, one finds com-
paratively small shifts in the spectra, but a strong redistribu-
tion of spectral weight.

this phase has been observed in the case of a hypercu-
bic lattice and U = ∞ [34] and for a generalized fcc lat-
tice [35] before. Since these calculations had to be done
at finite and comparatively high temperatures, questions
regarding the ground state magnetization and, especially
in the case of a hypercubic lattice, the actual extent of the
ferromagnetic phase in (δ, U) space could not be discussed
satisfactorily.

As an example for the ferromagnetic phase at T = 0
Figure 9 shows the magnetization per electron, m(δ) =
(n↑ − n↓)/(n↑ + n↓) as function of doping (Fig. 9a) and
the local DOS for two dopings (Fig. 9b) (U = 50). The

data for m(δ) in Figure 9a are fitted to the function

m(δ) = m0

√
1−

(
δ

δc

)ν
, (15)

and the result is given by the dotted line. The parame-
ters for the fit are m0 = 1, δc = 14.6% and ν = 2.75.
While for δ ↗ δc the typical mean-field behavior, i.e.
m(δ) ∝

√
1− δ

δc
, is obtained, the result for δ → 0 is

rather unconventional, viz. m(δ) ∝ 1 − 1
2

(
δ
δc

)2.75

. This
fit assumes that a fully polarized state is only reached as
δ → 0 [36]. Note, however, that the numerical results for
the magnetizationm(δ) for small δ are also consistent with
a fully polarized ferromagnet at finite δ.

It is also quite apparent from the DOS in Figure 9b,
that the ferromagnetism found here cannot be understood
on the basis of the typical Stoner theory. In contrast to the
shifts of the spectrum expected in the latter, we observe a
strong redistribution of spectral weight instead, but retain
otherwise the typical structures due to the strong correla-
tions. Only in the case δ → 0 the spectrum again resembles
that of a free system for the (almost completely polar-
ized) majority spins. The minority spins become strongly
depleted below the Fermi energy, the spectral weight can
be found almost completely in the upper Hubbard band
situated around ω ≈ U/2 (not shown in the figure). Never-
theless, we observe a tiny resonance just above the Fermi
energy even as δ → 0.

4 Summary and conclusion

In this paper, we used the dynamical mean-field theory
together with Wilson’s numerical renormalization group
to investigate the ground-state properties of the Hubbard
model on a hypercubic lattice with nearest-neighbor hop-
ping both at and off half-filling. While at half-filling the
ground-state is antiferromagnetic for all U > 0, at least for
the weak and intermediate coupling regime this magnetic
order can only be realized in a phase-separated state for
any finite doping, thus supporting and extending earlier
weak-coupling predictions.

The mapping of the Hubbard model for large U to an
antiferromagnetic t-J model strongly suggests the domi-
nance of antiferromagnetism in the ground state. The re-
sults for the Hubbard model in this paper show, however,
that the type of magnetic order for intermediate values of
the Coulomb repulsion U off half filling is still an open
issue; furthermore, the role of phase-separation (which is
observed for U ≤ 3) has still to be clarified for larger val-
ues of U .

The results are summarized in the schematic (δ, U)
ground state phase diagram of Figure 10. To allow the in-
clusion of all values 0 ≤ U <∞, the ratio U/(1+U) is used
on the abcissa. Close to half filling we find a phase sepa-
rated Néel antiferromagnet up to a certain value of U < 4.
The magnetization as function of doping follows a typical
mean-field behavior in all cases studied and the spectra
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Fig. 10. Schematic ground state phase diagram. At half-filling
(δ = 0), the ground state is antiferromagnetic. Close to half fill-
ing and small U , a phase separated antiferromagnet is realized.
For values of U beyond U ≈ 4 a magnetic phase is observed,
whose precise character could however not be identified. For
very large U > 25 and up to δ ≈ 30% a ferromagnet is found.

show the characteristic van-Hove singularities of the band
structure in the Néel state in cases where the characteris-
tic energy scale of the paramagnet is large enough. Most
important is the observation that, as typical for correlated
ordered systems, the spectra are not strongly shifted, as
e.g. predicted by Hartree theory, but rather show a strong
redistribution of spectral weight.

For values of U > 4 the system shows the tendency
towards a magnetic instability, which could not be further
identified due to technical problems in the solution of the
DMFT self-consistency. However, we at least can exclude
ferromagnetism here and a speculative possibility would
be the occurence of incommensurate phases or magnetic
phases with additional charge order. While the former can-
not be addressed easily within the present method, the
latter possibility will be investigated further.

At very large values of U > 25, there is a region
of ferromagnetism, extending between 0 < δ < 30% as
U →∞ [34]. For a fixed value of U , the magnetization per
electron in the ferromagnetic state shows the tendency to
saturate near half filling; from the numerical data it is of
course impossible to reliably conclude whether the system
is fully polarized at a finite δ already or only as δ → 0. The
data are consistent with both scenarios, but the latter is
supported by analytical treatments of the case δ → 0. As
in the case of the antiferromagnet, the spectrum shows a
rather strong redistribution of spectral weight, not simply
a shift of the features, as would be expected from Stoner
theory.

The phase diagram shows a peculiarity, which has
alread been pointed out by Obermeier et al. [34]. In
the region of very large U and δ → 0 there exists the
possibility of a direct transition between the “antiferro-
magnetic” phase and the ferromagnet. As at the point
(δ, U) = (0,∞) all possible spin configurations are degen-
erate, one can speculate how the phase diagram looks like
as (δ, U)→ (0,∞) [37]. Generic possibilities are sketched
in Figure 11. There can either be a direct transition be-

(0,∞)

AFM

FM

δ

U

(0,∞)

AFM

FM

δ

U

(0,∞)

AFM

FM

δ

U
(a)                               (b)                             (c)

Fig. 11. Possible realizations of the phase diagram as (δ,U)→
(0,∞): A direct transition between an antiferromagnet and a
ferromagnet as in (a), a small paramagnetic phase between
the two as in (b) or a mixed type of phase (e.g. ferrimagnet)
as in (c).

tween the two phases (Fig. 11a), which quite likely would
then be of first order, a gap filled by a paramagnetic phase
(Fig. 11b) or a new phase, e.g. a ferrimagnet interpolating
between the two extremes. The a priori exclusion or ver-
ification of any of these structures is, without a detailed
knowledge of the analytic behaviour of the relevant quan-
tities as function of (δ, U) in the vicinity of (δ, U) = (0,∞),
not possible.

While there is a consensus about the magnetic prop-
erties of the Hubbard model in a qualitative sense, the
direct inspection of details still reveals unexpected sur-
prises. Even within the DMFT, where one can safely state
that the paramagnetic phase diagram including the Mott-
Hubbard metal insulator transition is now understood, the
investigation of the magnetic properties is far from com-
plete. Obvious open questions are the magnetic properties
at intermediate values of U and the behavior when the an-
tiferromagnetic and ferromagnetic phases meet. Further-
more, the behaviour of the magnetic phases, especially the
spectral properties in the ordered phases, in the presence
of a frustration due to longer range hopping, has not been
addressed yet. This might be of some interest regarding
the question how the first order Mott-Hubbard transition
manifests itself in the magnetically ordered state. Work
along these lines is in progress.

We acknowledge useful discussions with P.G.J. van Dongen,
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